\(\int \sec ^3(c+d x) (a+a \sin (c+d x))^3 (A+B \sin (c+d x)) \, dx\) [991]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 31, antiderivative size = 62 \[ \int \sec ^3(c+d x) (a+a \sin (c+d x))^3 (A+B \sin (c+d x)) \, dx=\frac {a^3 (A+3 B) \log (1-\sin (c+d x))}{d}+\frac {a^3 B \sin (c+d x)}{d}+\frac {2 a^4 (A+B)}{d (a-a \sin (c+d x))} \]

[Out]

a^3*(A+3*B)*ln(1-sin(d*x+c))/d+a^3*B*sin(d*x+c)/d+2*a^4*(A+B)/d/(a-a*sin(d*x+c))

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 62, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {2915, 78} \[ \int \sec ^3(c+d x) (a+a \sin (c+d x))^3 (A+B \sin (c+d x)) \, dx=\frac {2 a^4 (A+B)}{d (a-a \sin (c+d x))}+\frac {a^3 (A+3 B) \log (1-\sin (c+d x))}{d}+\frac {a^3 B \sin (c+d x)}{d} \]

[In]

Int[Sec[c + d*x]^3*(a + a*Sin[c + d*x])^3*(A + B*Sin[c + d*x]),x]

[Out]

(a^3*(A + 3*B)*Log[1 - Sin[c + d*x]])/d + (a^3*B*Sin[c + d*x])/d + (2*a^4*(A + B))/(d*(a - a*Sin[c + d*x]))

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))

Rule 2915

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)
*(x_)])^(n_.), x_Symbol] :> Dist[1/(b^p*f), Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2)*(c + (d/b)*x
)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, c, d, m, n}, x] && IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2,
 0]

Rubi steps \begin{align*} \text {integral}& = \frac {a^3 \text {Subst}\left (\int \frac {(a+x) \left (A+\frac {B x}{a}\right )}{(a-x)^2} \, dx,x,a \sin (c+d x)\right )}{d} \\ & = \frac {a^3 \text {Subst}\left (\int \left (\frac {B}{a}+\frac {2 a (A+B)}{(a-x)^2}+\frac {-A-3 B}{a-x}\right ) \, dx,x,a \sin (c+d x)\right )}{d} \\ & = \frac {a^3 (A+3 B) \log (1-\sin (c+d x))}{d}+\frac {a^3 B \sin (c+d x)}{d}+\frac {2 a^4 (A+B)}{d (a-a \sin (c+d x))} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.09 (sec) , antiderivative size = 48, normalized size of antiderivative = 0.77 \[ \int \sec ^3(c+d x) (a+a \sin (c+d x))^3 (A+B \sin (c+d x)) \, dx=\frac {a^3 \left ((A+3 B) \log (1-\sin (c+d x))-\frac {2 (A+B)}{-1+\sin (c+d x)}+B \sin (c+d x)\right )}{d} \]

[In]

Integrate[Sec[c + d*x]^3*(a + a*Sin[c + d*x])^3*(A + B*Sin[c + d*x]),x]

[Out]

(a^3*((A + 3*B)*Log[1 - Sin[c + d*x]] - (2*(A + B))/(-1 + Sin[c + d*x]) + B*Sin[c + d*x]))/d

Maple [A] (verified)

Time = 0.46 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.65

method result size
parallelrisch \(-\frac {\left (\left (\sin \left (d x +c \right )-1\right ) \left (A +3 B \right ) \ln \left (\sec ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 \left (\sin \left (d x +c \right )-1\right ) \left (A +3 B \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+\frac {B \cos \left (2 d x +2 c \right )}{2}+\sin \left (d x +c \right ) \left (2 A +3 B \right )-\frac {B}{2}\right ) a^{3}}{d \left (\sin \left (d x +c \right )-1\right )}\) \(102\)
risch \(-i x \,a^{3} A -3 i x \,a^{3} B -\frac {i {\mathrm e}^{i \left (d x +c \right )} B \,a^{3}}{2 d}+\frac {i a^{3} {\mathrm e}^{-i \left (d x +c \right )} B}{2 d}-\frac {2 i a^{3} A c}{d}-\frac {6 i a^{3} B c}{d}-\frac {4 i a^{3} {\mathrm e}^{i \left (d x +c \right )} \left (A +B \right )}{d \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )^{2}}+\frac {2 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) A}{d}+\frac {6 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) B}{d}\) \(157\)
derivativedivides \(\frac {A \,a^{3} \left (\frac {\left (\tan ^{2}\left (d x +c \right )\right )}{2}+\ln \left (\cos \left (d x +c \right )\right )\right )+B \,a^{3} \left (\frac {\sin ^{5}\left (d x +c \right )}{2 \cos \left (d x +c \right )^{2}}+\frac {\left (\sin ^{3}\left (d x +c \right )\right )}{2}+\frac {3 \sin \left (d x +c \right )}{2}-\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+3 A \,a^{3} \left (\frac {\sin ^{3}\left (d x +c \right )}{2 \cos \left (d x +c \right )^{2}}+\frac {\sin \left (d x +c \right )}{2}-\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+3 B \,a^{3} \left (\frac {\left (\tan ^{2}\left (d x +c \right )\right )}{2}+\ln \left (\cos \left (d x +c \right )\right )\right )+\frac {3 A \,a^{3}}{2 \cos \left (d x +c \right )^{2}}+3 B \,a^{3} \left (\frac {\sin ^{3}\left (d x +c \right )}{2 \cos \left (d x +c \right )^{2}}+\frac {\sin \left (d x +c \right )}{2}-\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+A \,a^{3} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+\frac {B \,a^{3}}{2 \cos \left (d x +c \right )^{2}}}{d}\) \(273\)
default \(\frac {A \,a^{3} \left (\frac {\left (\tan ^{2}\left (d x +c \right )\right )}{2}+\ln \left (\cos \left (d x +c \right )\right )\right )+B \,a^{3} \left (\frac {\sin ^{5}\left (d x +c \right )}{2 \cos \left (d x +c \right )^{2}}+\frac {\left (\sin ^{3}\left (d x +c \right )\right )}{2}+\frac {3 \sin \left (d x +c \right )}{2}-\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+3 A \,a^{3} \left (\frac {\sin ^{3}\left (d x +c \right )}{2 \cos \left (d x +c \right )^{2}}+\frac {\sin \left (d x +c \right )}{2}-\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+3 B \,a^{3} \left (\frac {\left (\tan ^{2}\left (d x +c \right )\right )}{2}+\ln \left (\cos \left (d x +c \right )\right )\right )+\frac {3 A \,a^{3}}{2 \cos \left (d x +c \right )^{2}}+3 B \,a^{3} \left (\frac {\sin ^{3}\left (d x +c \right )}{2 \cos \left (d x +c \right )^{2}}+\frac {\sin \left (d x +c \right )}{2}-\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+A \,a^{3} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+\frac {B \,a^{3}}{2 \cos \left (d x +c \right )^{2}}}{d}\) \(273\)
norman \(\frac {\frac {48 A \,a^{3}+48 B \,a^{3}}{4 d}+\frac {\left (48 A \,a^{3}+48 B \,a^{3}\right ) \left (\tan ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d}+\frac {\left (64 A \,a^{3}+64 B \,a^{3}\right ) \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d}+\frac {\left (64 A \,a^{3}+64 B \,a^{3}\right ) \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d}+\frac {\left (80 A \,a^{3}+80 B \,a^{3}\right ) \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d}+\frac {\left (80 A \,a^{3}+80 B \,a^{3}\right ) \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d}+\frac {2 a^{3} \left (2 A +3 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}+\frac {2 a^{3} \left (2 A +3 B \right ) \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {4 a^{3} \left (10 A +9 B \right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {4 a^{3} \left (10 A +9 B \right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {2 a^{3} \left (10 A +11 B \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {2 a^{3} \left (10 A +11 B \right ) \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}}{\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2} \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{4}}+\frac {2 a^{3} \left (A +3 B \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{d}-\frac {a^{3} \left (A +3 B \right ) \ln \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}\) \(403\)

[In]

int(sec(d*x+c)^3*(a+a*sin(d*x+c))^3*(A+B*sin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-((sin(d*x+c)-1)*(A+3*B)*ln(sec(1/2*d*x+1/2*c)^2)-2*(sin(d*x+c)-1)*(A+3*B)*ln(tan(1/2*d*x+1/2*c)-1)+1/2*B*cos(
2*d*x+2*c)+sin(d*x+c)*(2*A+3*B)-1/2*B)*a^3/d/(sin(d*x+c)-1)

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 89, normalized size of antiderivative = 1.44 \[ \int \sec ^3(c+d x) (a+a \sin (c+d x))^3 (A+B \sin (c+d x)) \, dx=-\frac {B a^{3} \cos \left (d x + c\right )^{2} + B a^{3} \sin \left (d x + c\right ) + {\left (2 \, A + B\right )} a^{3} - {\left ({\left (A + 3 \, B\right )} a^{3} \sin \left (d x + c\right ) - {\left (A + 3 \, B\right )} a^{3}\right )} \log \left (-\sin \left (d x + c\right ) + 1\right )}{d \sin \left (d x + c\right ) - d} \]

[In]

integrate(sec(d*x+c)^3*(a+a*sin(d*x+c))^3*(A+B*sin(d*x+c)),x, algorithm="fricas")

[Out]

-(B*a^3*cos(d*x + c)^2 + B*a^3*sin(d*x + c) + (2*A + B)*a^3 - ((A + 3*B)*a^3*sin(d*x + c) - (A + 3*B)*a^3)*log
(-sin(d*x + c) + 1))/(d*sin(d*x + c) - d)

Sympy [F]

\[ \int \sec ^3(c+d x) (a+a \sin (c+d x))^3 (A+B \sin (c+d x)) \, dx=a^{3} \left (\int A \sec ^{3}{\left (c + d x \right )}\, dx + \int 3 A \sin {\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int 3 A \sin ^{2}{\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int A \sin ^{3}{\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int B \sin {\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int 3 B \sin ^{2}{\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int 3 B \sin ^{3}{\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int B \sin ^{4}{\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx\right ) \]

[In]

integrate(sec(d*x+c)**3*(a+a*sin(d*x+c))**3*(A+B*sin(d*x+c)),x)

[Out]

a**3*(Integral(A*sec(c + d*x)**3, x) + Integral(3*A*sin(c + d*x)*sec(c + d*x)**3, x) + Integral(3*A*sin(c + d*
x)**2*sec(c + d*x)**3, x) + Integral(A*sin(c + d*x)**3*sec(c + d*x)**3, x) + Integral(B*sin(c + d*x)*sec(c + d
*x)**3, x) + Integral(3*B*sin(c + d*x)**2*sec(c + d*x)**3, x) + Integral(3*B*sin(c + d*x)**3*sec(c + d*x)**3,
x) + Integral(B*sin(c + d*x)**4*sec(c + d*x)**3, x))

Maxima [A] (verification not implemented)

none

Time = 0.22 (sec) , antiderivative size = 52, normalized size of antiderivative = 0.84 \[ \int \sec ^3(c+d x) (a+a \sin (c+d x))^3 (A+B \sin (c+d x)) \, dx=\frac {{\left (A + 3 \, B\right )} a^{3} \log \left (\sin \left (d x + c\right ) - 1\right ) + B a^{3} \sin \left (d x + c\right ) - \frac {2 \, {\left (A + B\right )} a^{3}}{\sin \left (d x + c\right ) - 1}}{d} \]

[In]

integrate(sec(d*x+c)^3*(a+a*sin(d*x+c))^3*(A+B*sin(d*x+c)),x, algorithm="maxima")

[Out]

((A + 3*B)*a^3*log(sin(d*x + c) - 1) + B*a^3*sin(d*x + c) - 2*(A + B)*a^3/(sin(d*x + c) - 1))/d

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 228 vs. \(2 (63) = 126\).

Time = 0.34 (sec) , antiderivative size = 228, normalized size of antiderivative = 3.68 \[ \int \sec ^3(c+d x) (a+a \sin (c+d x))^3 (A+B \sin (c+d x)) \, dx=-\frac {{\left (A a^{3} + 3 \, B a^{3}\right )} \log \left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right ) - 2 \, {\left (A a^{3} + 3 \, B a^{3}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 3 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + A a^{3} + 3 \, B a^{3}}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1} + \frac {3 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 9 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 10 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 22 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 3 \, A a^{3} + 9 \, B a^{3}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1\right )}^{2}}}{d} \]

[In]

integrate(sec(d*x+c)^3*(a+a*sin(d*x+c))^3*(A+B*sin(d*x+c)),x, algorithm="giac")

[Out]

-((A*a^3 + 3*B*a^3)*log(tan(1/2*d*x + 1/2*c)^2 + 1) - 2*(A*a^3 + 3*B*a^3)*log(abs(tan(1/2*d*x + 1/2*c) - 1)) -
 (A*a^3*tan(1/2*d*x + 1/2*c)^2 + 3*B*a^3*tan(1/2*d*x + 1/2*c)^2 + 2*B*a^3*tan(1/2*d*x + 1/2*c) + A*a^3 + 3*B*a
^3)/(tan(1/2*d*x + 1/2*c)^2 + 1) + (3*A*a^3*tan(1/2*d*x + 1/2*c)^2 + 9*B*a^3*tan(1/2*d*x + 1/2*c)^2 - 10*A*a^3
*tan(1/2*d*x + 1/2*c) - 22*B*a^3*tan(1/2*d*x + 1/2*c) + 3*A*a^3 + 9*B*a^3)/(tan(1/2*d*x + 1/2*c) - 1)^2)/d

Mupad [B] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 63, normalized size of antiderivative = 1.02 \[ \int \sec ^3(c+d x) (a+a \sin (c+d x))^3 (A+B \sin (c+d x)) \, dx=\frac {\ln \left (\sin \left (c+d\,x\right )-1\right )\,\left (A\,a^3+3\,B\,a^3\right )-\frac {2\,A\,a^3+2\,B\,a^3}{\sin \left (c+d\,x\right )-1}+B\,a^3\,\sin \left (c+d\,x\right )}{d} \]

[In]

int(((A + B*sin(c + d*x))*(a + a*sin(c + d*x))^3)/cos(c + d*x)^3,x)

[Out]

(log(sin(c + d*x) - 1)*(A*a^3 + 3*B*a^3) - (2*A*a^3 + 2*B*a^3)/(sin(c + d*x) - 1) + B*a^3*sin(c + d*x))/d